Exercise 8

Use the modified decomposition method to solve the following Volterra integral equations:

$$
u(x)=e^{x}+x e^{x}-x-\int_{0}^{x} x u(t) d t
$$

Solution

Assume that $u(x)$ can be decomposed into an infinite number of components.

$$
u(x)=\sum_{n=0}^{\infty} u_{n}(x)
$$

Substitute this series into the integral equation.

$$
\begin{aligned}
& \sum_{n=0}^{\infty} u_{n}(x)=e^{x}+x e^{x}-x-\int_{0}^{x} x \sum_{n=0}^{\infty} u_{n}(t) d t \\
& u_{0}(x)+u_{1}(x)+u_{2}(x)+\cdots=e^{x}+x e^{x}-x-\int_{0}^{x} x\left[u_{0}(t)+u_{1}(t)+\cdots\right] d t \\
& u_{0}(x)+u_{1}(x)+u_{2}(x)+\cdots=\underbrace{e^{x}}_{u_{0}(x)}+\underbrace{x e^{x}-x-\int_{0}^{x} x u_{0}(t) d t}_{u_{1}(x)}+\underbrace{\int_{0}^{x} x\left[-u_{1}(t)\right] d t}_{u_{2}(x)}+\cdots
\end{aligned}
$$

Grouping the terms as we have makes it so that the series terminates early.

$$
\begin{aligned}
u_{0}(x) & =e^{x} \\
u_{1}(x) & =x e^{x}-x-\int_{0}^{x} x u_{0}(t) d t=x e^{x}-x-x\left(e^{x}-1\right)=0 \\
u_{2}(x) & =\int_{0}^{x} x\left[-u_{1}(t)\right] d t=0 \\
& \vdots \\
u_{n}(x) & =\int_{0}^{x} x\left[-u_{n-1}(t)\right] d t=0, \quad n>2
\end{aligned}
$$

Therefore,

$$
u(x)=e^{x} .
$$

